
APPLYING ADA TO BEECH STARSHIP.AVIONICS

David W. Funk
Rockwell International
Cedar Rapids, Iowa

Abstract

Rockwell International's Collins Avionics Group has been active in the Ada*
language development since 1978 when we participated in the design
evaluation. As the language design solidified, it became evident that Ada
offered advantages for avionics systems because of its support for modern
software engineering principles and real-time applications. Starting in 1983,
Collins developed' an Ada programing support environment for two major
avionics subsystems in the Beech Starship. The two subsystems include
electronic flight instrument displays and the flight management computer
system. Both these systems use multiple Intel 80186 microprocessors. The
flight management computer provides flight planning, navigation displays,
primary flight display of attitude as well as engine instruments and
multi-function displays of checklists and other pilot advisory information.
Together these systems represent nearly 80,000 lines of Ada source code and to
date approximately 30 man years of effort. The Beech Starship avionic systems
are in flight test now with expected FAA certification by the end of 1986.

Background

The Beech Starship i s an entirely new turboprop airplane that will combine
high performance and excellent fuel economy (see Table 1). The Starship with
its composite construction, unconventional design and advanced avionics
architecture presented a unique opportunity for Collins Avionics to pioneer
the use of Ada in an airborne application.

Applying Ada to major subsystems of the Starship avionics offered several
software engineering challenges. Except for the use of proven software design

We started with new system/software requirements, a new development team, a
new host computer environment (VAX), a new target computer environment (Intel
80186) and of course a new HOL Ada. It would be misleading t o think the
selection of Ada was the cause of all this newness because it was not. Given
the new system requirements, all the other elements would be new, independent
of the language.

r and testing methods all the other elements of software development were new. -

* Ada is a registered trademark of the Department of Defense (AJPO).

F. 1 , 1 , l

TABLE 1

Starship Operating Characteristics

Max. Takeoff Weight 12,500 lbs.

Max. Altitude 41,000 feet

Cruise Speed 400 mph

Max. Occupants 10

Single Pilot IFR

Starship APSE

The Ada Programming Support Environment (APSE) that Collins established for
the Starship applications include a compiler, assembler/linker/loader,
symbolic debugger, configuration manager, text editor and command language
interpreter. The APSE is hosted on VAX (VMS) computers targeted to the Intel
80186 (see Figure 1). The components of the APSE are discussed below:

ComDiler

Developed by Irving Compiler Corporation (formerly the Irvine Computer Science
Corporation), the ICC compiler front end accepts an Ada source program and
performs all lexical, syntactic, and semantic analysis. Under license to ICC,
Collins developed the code generator for the Intel 8086 family of
microprocessors. While the compiler is not validated by the Ada Joint Program
Office, it only accepts valid Ada statements. At the beginning of the
Starship projects it was determined that the ICC compiler was more than
adequate to support the design constructs used in avionics software. This
conclusion was reached by careful comparison with other HOL compilers in use
at Collins. The compiler produces an assembly source file at the rate of 800
to 1000 Ada source lines per minute on a VAX 785. When the option is selected
the compiler also produces a symbol table file for use by the symbolic
debugger.

Configuration Manager

When the code is developed there must then be a method of keeping track of its
evolution. This is partially the task of a configuration management tool.
Source Tools by Oregon Software is used to manage a project's files by storing
them in a library, tracking changes, and monitoring access to the library that
contains the files. The Make function controls the efficient building of a
software system by determining which components in the system have changed and
then updating, or creating new versions of, only those files that depend on
the changed components.

F01.1.2

Symbolic Debugger

The testing phase is especially difficult for embedded computer applications.
Because of this, Collins Avionics has developed a symbolic debugger which
allows a developer to test a program at the Ada source code level on the
target computer rather than at a lower machine code level. The debugger uses
a database that is generated in part by the compiler, assembler and linker.
This database is separate from the user program. This means that the user
program need not be altered (it could even be in ROM) in order to use the
debugger for testing.

The symbolic debugger which is also written in Ada is hosted on a n I B M
personal computer. The personal computer is fitted with cards that connect it
via a cable to the target computer. These circuit cards provide additional
RAM memory as well as control functions including signals to reset, halt, run
and step the target computer, as well as facilities to examine and modify
target memory location, an execution history buffer and address matching logic
for breakpoints. The user interface to the debugger via the personal computer
include commands for file manipulation, execution control, breakpoint, data
manipulation as well as show and help commands.

Editor

The text editor currently being used is the EDT editor developed by DEC. It
allows editing to be done in either full screen or line mode.

Interpreter

This task is currently performed by DEC's Digital Command Language (DCL) and
its associated command processor. This provides a user with interactive
program development, device and data file manipulation, and interactive and
batch program execution and control.

Assembler/Linker/Loader

For the 80186, a VAX hosted cross assembler/linker package was purchased from
Microtec Research. Collins developed programs were added to this package to
provide data for the symbolic debugger.

GGS ComDiler

In order to help automate the generation of electronic flight display page
formats, a general graphics system (GGS) compiler was added to the Starship
APSE. As shown in Figure 1, the compiler accepts GGS source code and
translates it into Ada source code. The GGS source is expressed in a language
that allows description of a graphics object such as scales, pointers, numbers
and letters as well as raster fill areas and stroke written areas. The GGS
compiler which is written in Ada also runs on the VAX host computer.

F. 1.1.3

ORlGlNAL PAGE 1s
POOR QUALITY

'

Ada Program Development Flow

FIGURE 1

. . A C . 5 E ME; L E F'
;.,$\..................I

i +..

DEBUGGER

1.I

............ Lll\li.EF'

...........

F. 1.1.4

Ada Applications

In order to support the embedded applications, Collins developed a Real-Time
Executive (RTE) which is written in Ada. While the RTE is compatible with
Ada, it uses a slightly different tasking model than the one directly
supported by the language. A different model was chosen for two reasons. 1)
It is a tasking model that Collins has used in many other embedded systems.
2) The ICC compiler did not completely support all of the Ada tasking
features.

The RTE provides an interface from the application programs to the 80186
processor. Included in the processor resources are the CPU execution
resource, interrupts and the timers. From the viewpoint of the application
program, the following functions are supported: tasking, based on the concept
of independent tasks, which share the CPU resources; time-based execution of
tasks; event-based synchronization between tasks; external interrupt based
execution of tasks and controlled access to resources such that independent
tasks do not interfere with each other accessing shared resources.

A task is identified by stack, outer scope procedure, priority, and a four
character name. Tasks are prioritized and may be activated by cyclic timer,
event based signal or an external hardware interrupt. The RTE can support
cyclic execution of tasks up to 1000 hertz. An Ada package may contain the
outer procedure and stack for zero, one or more tasks, and procedures in a
package may be executed by many different tasks. Table 2 lists the executive
service routines that an application uses to interface with the RTE. The size
of the RTE target code is approximately 10,000 bytes.

EFD

The Electronic Flight Displays (EFD) developed for Beech use 6 x 7 inch color
CRT and completely integrated display processing. One display unit type is
used in four applications in the cockpit. Table 3 indicates the applications
and their functions. Each display unit is programmed with two applications to
allow better redundancy and reversionary modes. In a two pilot cockpit, six
display units, (four PFD/ND units and two EICAS/MFD units) are used . The Ada
based applications execute on an pair of 80186 microprocessors. The first
80186 is used for application specific functions (such as PFD or ND) as well
as input/output functions. The second processor is used for display control
functions that are common to all display applications. Each processor uses a

1

copy of the RTE.

The Flight Management
multi-sensor navigation
This system consists of

System (FMS) provides a very flexible automatic
system which greatly reduces the pilot's workload.
a control display unit, a data base unit with a 3 1/2

F . 1 . 1 . 5

inch floppy disk drive, and the flight management computer with a pair of
80186 processors. The Ada based applications implement the functions listed
in Table 4. The software is partitioned on the two microprocessors in the
following way. The first microprocessor provides control of the pages
displayed on the CDU as well as control of the data base unit. The second
microprocessor coupled with a floating point co-processor provides all of the
navigation and performance computations. Some statistics about the EFD and
FMS projects are summarized in Table 5 .

TABLE 2

Executive Service Routines

Procedures:

Functions:

START TASK

CHANGE PRIORITY

defines a task procedure,
stack, priority, and name

raise or lower a task
priority

ABORT TASK stop task execution

SET TIMER INTERRUPT RATE

WAIT FOR TIMER INTERRUPT

WAIT FOR (EVENT)

SIGNAL (EVENT)

RESERVE (RESOURCE)

RELEASE (RESOURCE)

FULL SECONDS

CENT1 SECONDS

defines cyclic task
execution rate in hertz.

stalls task until next
cyclic timer interrupt

stalls task until a
signaled event or external
interrupt

used to synchronize with
another task

used to dedicate a shared
resource to the calling
task

frees a shared resource
(opposite of RESERVE)

returns current value of
real time clock in seconds

returns current value of
real time clock in 0.01
seconds

F. 1.1.6

TABLE 3

EFD Applications and Functions

- PFD (Primary Flight Display)

Attitude
Flight Director
Lateral & Glideslope Deviation
Airspeed error
Alerts: marker beacon, decision

Flight guidance modes (lateral & vertical)
Fault & off-normal annunciations
Reversionary "composite" PFD & ND

height, altitude, ILS

- ND (Navigation Display)

Heading
Selected heading/course/track
Lateral/vertical deviation
Bearings (ADF, VOR, WPT)
Distanceltime to WPT
Groundspeed, windspeed
Flight plan with Navaids
Weather radar
Reversionary "composite" PFD & ND format

TABLE 4

FMS Functions

EICAS (Engine Instrument Crew
Advisory System)
Torque
Prop RPM
Prop Sync

Fuel Flow
Oil temp, pressure
80 caution & advisory msg

N1

- MFD (Multi-function Display)

Reversionary EICAS
Weather radar
Moving map (hdg up)
Planning map (north up)
Checklist (emergency & routine)
Nav status pages (pos, perf)
Diagnostic & maintenance data

(1) Statistical estimation of present position employing Kalman filtering
techniques, utilizing all available sensor data.

(2) Automatic station selection, tuning, and management of a position fixing
submode hierarchy, with provisions for pilot to intervene where
appropriate.

(3) Adaptive leg-to-leg and off-course captures with g-limited steering law.

(4) Worldwide data base of VHF navigation aids, airport reference points, and
published waypoints in numerous categories.

(5) Pilot creation of a large number of stored routes separate from the active
flight plan, with provisions for off-aircraft creation and editing of the
stored routes and ability to make trip planning calculations in flight.

(6) Calculations predictive of fuel remaining at destination

(7) Vertical Navigation function with deviation and steering outputs relative
to fixed paths in space as may be defined in several ways.

F.1.1.7

TABLE 5

Ada Project Statistics

SOFTWARE LINES OF TARGET CODE
PROJECT ENGINEERS SOURCE CODE . SIZE (BYTES)

8 31 , 000 318 , 000 EFD

FMS 12 51 , 000 470 , 000

HOST DISK
(MEGABYTES)

164

189

Lessons Learned

Two and a half years of using Ada in real-time embedded systems have taught us
some lessons about the application of the language. We chose a "walk first
approach" in using Ada. Instead of trying to embrace the entire language with
all of its new features, we chose to use a subset of the language that was
similar to features of other high order languages we have used. This approach
appeared to be wise in terms of training and in terms of bounding the number
of variables in building a new system.

Training was accomplished by a combination of classroom work, textbook study
and running examples on the VAX hosted APSE. The twelve hours of classroom
training which was prepared and delivered by an in-house Ada expert,
concentrated on the Ada concepts and features to be used by the Starship
project. To complement the classroom work, all students were given a copy of
the book "Software Engineering with Ada" by Grady Booch. Despite the fact
that nearly every element was new in the software development process for
these projects, we found software engineering productivity to average 200
delivered Ada source lines per man month. This is approximately equivalent to
what we have experienced on other projects using more established programming
support environments.

We discovered that the demands on the host computer system were greater than
we had expected.
While the compiler is quite fast at 1000 lpm, adding the steps for the
assembler, linker and debugger table generation reduce the average to 250
lpm. Add to this the fact that the configuration manager enforces
recompilation of dependent packages and the result is longer processing times
on the VAX host than we originally planned. Table 5 indicates the amount of
host disk space required to support each project which is about twice what we
have experienced on other HOL based avionics projects. The increase is
explained by the additional files for configuration manager revision history,
for the debugger database and the symbol tables needed by the compiler for Ada
package specs and bodies. As far as code density on the target, we found the
average of nine to ten bytes per Ada statement to be the same as other HOLs
for the 80186.

This is in terms of both processing time and storage space.

We feel that Ada has brought some real benefits to the subsystems. Ada has
provided the discipline and checks to allow program builds to work the first
time in laboratory equipment. This greatly reduced debug time on the target
computer. Ada has helped offer us more portable code between host system
VAX's, personal computers and our target computers. And with the aid of
symbolic debugging tools, our verification tasks are simplified.

F.1.1.8

